Chaotic Rough Particle Swarm Optimization Algorithms
نویسندگان
چکیده
The problem of finding appropriate representations for various is a subject of continued research in the field of artificial intelligence and related fields. In some practical situations, mathematical and computational tools for faithfully modeling or representing systems with uncertainties, inaccuracies or variability in computation should be provided; and it is preferable to develop models that use ranges as values. A need to provide tolerance ranges and inability to record accurate values of the variables are examples of such a situation where ranges of values must be used (Lingras, 1996). Representations with ranges improve data integrity for non-integral numerical attributes in data storage and would be preferable due to no lose of information. Rough patterns proposed by Lingras are based on an upper and a lower bound that form a rough value that can be used to effectively represent a range or set of values for variables such as daily weather, stock price ranges, fault signal, hourly traffic volume, and daily financial indicators (Lingras, 1996; Lingras & Davies, 2001). The problems involving, on input/output or somewhere at the intermediate stages, interval or, more generally, bounded and set-membership uncertainties and ambiguities may be overcome by the use of rough patterns. Further developments in rough set theory have shown that the general concept of upper and lower bounds provide a wider framework that may be useful for different types of applications (Lingras & Davies, 2001). Generating random sequences with a long period and good uniformity is very important for easily simulating complex phenomena, sampling, numerical analysis, decision making and especially in heuristic optimization. Its quality determines the reduction of storage and computation time to achieve a desired accuracy. Chaos is a deterministic, random-like process found in non-linear, dynamical system, which is non-period, non-converging and bounded. Moreover, it has a very sensitive dependence upon its initial condition and parameter (Schuster, 1998). The nature of chaos is apparently random and unpredictable and it also possesses an element of regularity. Mathematically, chaos is randomness of a simple deterministic dynamical system and chaotic system may be considered as sources of randomness. Chaotic sequences have been proven easy and fast to generate and store, there is no need for storage of long sequences (Heidari-Bateni & McGillem, 1994). Merely a few functions (chaotic maps) and few parameters (initial conditions) are needed even for very long sequences. In addition, an enormous number of different sequences can be generated simply
منابع مشابه
Chaotic-based Particle Swarm Optimization with Inertia Weight for Optimization Tasks
Among variety of meta-heuristic population-based search algorithms, particle swarm optimization (PSO) with adaptive inertia weight (AIW) has been considered as a versatile optimization tool, which incorporates the experience of the whole swarm into the movement of particles. Although the exploitation ability of this algorithm is great, it cannot comprehensively explore the search space and may ...
متن کاملNon-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method
Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain id...
متن کاملChaotic Particle Swarm Optimization with Mutation for Classification
In this paper, a chaotic particle swarm optimization with mutation-based classifier particle swarm optimization is proposed to classify patterns of different classes in the feature space. The introduced mutation operators and chaotic sequences allows us to overcome the problem of early convergence into a local minima associated with particle swarm optimization algorithms. That is, the mutation ...
متن کاملA Novel Hybrid Clustering Algorithms with Chaotic Particle Swarm Optimization ⋆
In order to overcome the premature convergence in the particle swarm optimization algorithm, dynamically chaotic perturbation is introduced to form a dynamically chaotic PSO, briefly denoted as DCPSO. To get rid of the drawbacks of simply finding the convex cluster and being sensitive to the initial partitions in k -means algorithm, a novel hybrid clustering algorithm combined with the DCPSO is...
متن کاملHybridization of Chaotic Quantum Particle Swarm Optimization with SVR in Electric Demand Forecasting
Abstract: In existing forecasting research papers support vector regression with chaotic mapping function and evolutionary algorithms have shown their advantages in terms of forecasting accuracy improvement. However, for classical particle swarm optimization (PSO) algorithms, trapping in local optima results in an earlier standstill of the particles and lost activities, thus, its core drawback ...
متن کاملSuppression of Chaotic Behavior in Duffing-holmes System using Backstepping Controller Optimized by Unified Particle Swarm Optimization Algorithm
The nonlinear behavior analysis and chaos control for Duffing-Holmes chaotic system is discussed in the paper. In order to suppress the irregular chaotic motion, an optimal backstepping controller is designed. The backstepping method consists of parameters with positive values. The improper selection of the parameters leads to inappropriate responses or even may lead to instability of the syste...
متن کامل